Assessment of Estrogenic Endocrine-Disrupting Chemical Actions in the Brain Using in Vivo Somatic Gene Transfer

نویسندگان

  • Vance L. Trudeau
  • Nathalie Turque
  • Sébastien Le Mével
  • Caroline Alliot
  • Natacha Gallant
  • Laurent Coen
  • Farzad Pakdel
  • Barbara Demeneix
چکیده

Estrogenic endocrine-disrupting chemicals abnormally stimulate vitellogenin gene expression and production in the liver of many male aquatic vertebrates. However, very few studies demonstrate the effects of estrogenic pollutants on brain function. We have used polyethylenimine-mediated in vivo somatic gene transfer to introduce an estrogen response element-thymidine kinase-luciferase (ERE-TK-LUC) construct into the brain. To determine if waterborne estrogenic chemicals modulate gene transcription in the brain, we injected the estrogen-sensitive construct into the brains of Nieuwkoop-Faber stage 54 Xenopus laevis tadpoles. Both ethinylestradiol (EE2; p < 0.002) and bisphenol A (BPA; p < 0.03) increased luciferase activity by 1.9- and 1.5-fold, respectively. In contrast, low physiologic levels of 17ss-estradiol had no effect (p > 0.05). The mixed antagonist/agonist tamoxifen was estrogenic in vivo and increased (p < 0.003) luciferase activity in the tadpole brain by 2.3-fold. There have been no previous reports of somatic gene transfer to the fish brain; therefore, it was necessary to optimize injection and transfection conditions for the adult goldfish (Carassius auratus). Following third brain ventricle injection of cytomegalovirus (CMV)-green fluorescent protein or CMV-LUC gene constructs, we established that cells in the telencephalon and optic tectum are transfected. Optimal transfections were achieved with 1 microg DNA complexed with 18 nmol 22 kDa polyethylenimine 4 days after brain injections. Exposure to EE2 increased brain luciferase activity by 2-fold in males (p < 0.05) but not in females. Activation of an ERE-dependent luciferase reporter gene in both tadpole and fish indicates that waterborne estrogens can directly modulate transcription of estrogen-responsive genes in the brain. We provide a method adaptable to aquatic organisms to study the direct regulation of estrogen-responsive genes in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of estrogenic response genes to different concentration of 17ß-estradiol in male mosquitofish (Gambusia yucatana)

The estrogenic effects of endocrine disrupting compounds in fish are not reversible and can reduce populations. Sensitive methods such as Q-PCR, Western blot, etc., have been used to determine changes in gene expression and this predict the effects before they become irreversible. The present study was designed to detect the expression of the estrogen receptors vitellogenin and pregnane X indic...

متن کامل

Deleterious effects of estrogenic endocrine disruptors on marine organisms: Histological Observed Effects and Some Novel Useful Monitoring Bioassays

Aquatic environments receive significant levels of chemical contaminants generated by human activities. Among these pollutants, we noticed the xenobiotics known as reproductive toxicants and endocrine disruptors. The endocrine disruption in wildlife has been the subject of many reviews and workshops in recent years. Field observations of reproductively abnormal organisms and population declines...

متن کامل

The Presence of 17 Beta-Estradiol in the Environment: Health Effects and Increasing Environmental Concerns

  Endocrine-disrupting compounds (EDCs) as active biological compounds can pose a threat to the environment through acute and chronic toxicity in organisms, accumulation in the ecosystem, and loss of habitats and biodiversity. They also have a range of possible adverse effects on environmental...

متن کامل

Analysis of vitellogenin gene structure in Caspian roach, Rutilus caspicus (Pisces: Cyprinidae) during exposure to Atrazine

Chemical contamination of aquatic environments to EDCs has become a major focus of environmental toxicology research. The exposure of fishes to estrogenic EDCs in aquatic environments is most frequently assessed by analyzing Vitellogenin (Vg) (the egg yolk precursor protein) expression. Therefore, characterization of Vg gene is of high priority for EDCs bio-monitoring. So, we prepared liver tis...

متن کامل

Estrogenic Effects of Several BPA Analogs in the Developing Zebrafish Brain

Important set of studies have demonstrated the endocrine disrupting activity of Bisphenol A (BPA). The present work aimed at defining estrogenic-like activity of several BPA structural analogs, including BPS, BPF, BPAF, and BPAP, on 4- or 7-day post-fertilization (dpf) zebrafish larva as an in vivo model. We measured the induction level of the estrogen-sensitive marker cyp19a1b gene (Aromatase ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 113  شماره 

صفحات  -

تاریخ انتشار 2005